

 Navigation

 	
 index

 	
 next |

 	Fedora Cloud 0.1 documentation

Welcome to Fedora Cloud User Guide!

This repo contains the documentation for Fedora Cloud users.

Contents:

	What is Fedora Cloud?

	Networkd
	Comparing systemd-networkd and NetworkManager

	Configuration

	Switching from NetworkManager to systemd-networkd

	systemd-networkd use cases

	Status & Diagnostics

	Atomic image examples
	Setting up Fedora Atomic cluster with Kubernetes and Vagrant

	Setting up Fedora Atomic cluster with Kubernetes and preinstalled hosts

	Atomic Command Cheat Sheet

	Cloud Base Image examples
	How to do docker-storage-setup in Fedora 22 cloud image?

	How to build a network router and firewall with Fedora 22 and systemd-networkd?

	Docker related queries

	Vagrant
	Using Vagrant in Fedora

	Irssi: IRC Client on Atomic Host
	Steps

	Irssi Commands

	More Commands

	How to contribute to this guide?

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fedora Cloud 0.1 documentation

What is Fedora Cloud?

Fedora Cloud provides few different images of Fedora Project which can be consumed
in private and public cloud infrastructures. The following list contains the different
kind of images available for the users.

	Cloud Base

	This is the minimal image of Fedora, it has the bare minimal packages required to run on any cloud environment.

	Atomic Image

	Atomic image is a lightweight, immutable platform, designed with the sole purpose of running containerized applications. This can also be used in any public or private cloud environment. To learn more you can visit the Project Atomic [http://www.projectatomic.io/] project page.

	Vagrant images

	We also provide Vagrant images for both cloud base, and atomic. Both VirtualBox, and libvirt is supported by the two different image we publish for Vagrant.

	Docker image

	If you do docker pull fedora, then you will get the latest Fedora image for docker. This image is also created by the Fedora Cloud team.

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fedora Cloud 0.1 documentation

 This Documenation is created with the help of Major Hayden [https://major.io/]. Thanks to Major Hayden :).

Networkd

This chapter shows how to convert Network manger to Networkd and various use cases of Networkd

Comparing systemd-networkd and NetworkManager

	NetworkManager has been around for quite some time and systemd-networkd is relatively new.

	Re-configuring existing network interfaces is challenging for both NetworkManager and systemd-networkd

	Accessing raw systemd-networkd configuration files is more straightforward than NetworkManager

	systemd-networkd’s memory and CPU usage is extremely low (good for containerized environments)

	systemd-networkd can handle various sysctl activities automatically, like IP forwarding

	Tunnels and Overlays
- NetworkManager has more options for advanced tunnels, like vpnc, openconnect, and openvpn
- systemd-networkd makes gre, vlan, vxlan, and other overlay technologies much easier to implement

	NetworkManager’s logging is more verbose by default, which can be good for troubleshooting

	systemd-networkd is meant to be configured without a GUI

Configuration

Fedora Cloud Base Image. Download it from here [https://getfedora.org/en/cloud/download/].

Switching from NetworkManager to systemd-networkd

Start by ensuring that NetworkManager and network scripts don’t start on reboot:

systemctl disable NetworkManager
systemctl disable network

Ensure that systemd-networkd starts on the next boot:

systemctl enable systemd-networkd

Enable the resolver and make a symlink:

systemctl enable systemd-resolved
systemctl start systemd-resolved
rm -f /etc/resolv.conf
ln -s /run/systemd/resolve/resolv.conf /etc/resolv.conf

Be sure to configure your network interfaces in /etc/systemd/network and then reboot.

systemd-networkd use cases

Here are some sample use cases for systemd-networkd and example configurations.

Simple DHCP on a single interface

For an interface eth0, a single .network file is needed:

cat /etc/systemd/network/eth0.network
[Match]
Name=eth0

[Network]
DHCP=yes

Static address on a single interface

For an interface eth0, a single .network file is needed:

cat /etc/systemd/network/eth0.network
[Match]
Name=eth0

[Network]
Address=192.168.0.50/24
Address=2001:db8:dead:beef::/64

These are optional but worth mentioning
DNS=8.8.8.8
DNS=8.8.4.4
NTP=pool.ntp.org

You can also split up the addresses into separate blocks:

cat /etc/systemd/network/eth0.network
[Match]
Name=eth0

[Network]
DNS=8.8.8.8
DNS=8.8.4.4
NTP=pool.ntp.org

[Address]
Address=192.168.0.50/24

[Address]
Address=2001:db8:dead:beef::/64

Or add static routes:

cat /etc/systemd/network/eth0.network
[Match]
Name=eth0

[Network]
DNS=8.8.8.8
DNS=8.8.4.4
NTP=pool.ntp.org

[Address]
Address=192.168.0.50/24

[Address]
Address=2001:db8:dead:beef::/64

[Route]
Destination=10.0.10.0/24
Gateway=192.168.50.1

[Route]
Destination=10.0.20.0/24
Gateway=192.168.50.1

Do DHCP on all network devices

You can use wildcards almost anywhere in the [Match] block. For example, this will cause systemd-networkd to do DHCP on all interfaces:

[Match]
Name=eth*

[Network]
DHCP=yes

Bridging

Let’s consider an example where we have eth0 and we want to add it to a bridge. This could be handy for servers where you want to build containers or virtual machines and attach them to the network bridge.

Start by setting up our bridge interface, br0:

cat /etc/systemd/network/br0.netdev
[NetDev]
Name=br0
Kind=bridge

Now that we have a bridge device, let’s configure the network for the bridge:

cat /etc/systemd/network/br0.network
[Match]
Name=br0

[Network]
IPForward=yes
DHCP=yes

The IPForward=yes will take care of the sysctl forwarding setting for us (net.ipv4.conf.br0.forwarding = 1) automatically when the interface comes up.

Now, let’s take the ethernet adapter and add it to the bridge:

cat /etc/systemd/network/eth0.network
[Match]
Name=eth0

[Network]
Bridge=br0

Simply reboot the system and it will come up with eth0 as a port on br0.

Bonding

Configuring a bonded interface is very similar to configuring a bridge. Start by setting up the individual network adapters:

/etc/systemd/network/ens9f0.network
[Match]
Name=ens9f0

[Network]
Bond=bond1

/etc/systemd/network/ens9f1.network
[Match]
Name=ens9f1

[Network]
Bond=bond1

Now we can create the network device for the bond:

/etc/systemd/network/bond1.netdev
[NetDev]
Name=bond1
Kind=bond

[Bond]
Mode=802.3ad
TransmitHashPolicy=layer3+4
MIIMonitorSec=1s
LACPTransmitRate=fast

Once the device is defined, let’s add some networking to it:

/etc/systemd/network/bond1.network
[Match]
Name=bond1

[Network]
DHCP=yes
BindCarrier=ens9f0 ens9f1

The BindCarrier is optional but recommended. It gives systemd-networkd the hint that if both bonded interfaces are offline, it should remove the bond configuration until one of the interfaces comes up again.

Status & Diagnostics

All of the output from systemd-networkd will appear in your system journal. Any errors when setting up interfaces or configuring routes will be printed there. The networkctl command allows you to check your network devices at a glance. Here’s an example of a fairly complicated network setup:

networkctl
IDX LINK TYPE OPERATIONAL SETUP
 1 lo loopback carrier unmanaged
 2 enp3s0 ether off unmanaged
 3 enp1s0f0 ether degraded configured
 4 enp1s0f1 ether degraded configured
 5 br1 ether routable configured
 6 br0 ether routable configured
 7 gre0 ipgre off unmanaged
 8 gretap0 ether off unmanaged
 9 gre-colocation ipgre routable configured
 12 vlan100 ether routable configured
 13 tun1 none routable unmanaged
 14 tun0 none routable unmanaged
 15 vlan200 ether routable configured

You’ll find two physical network cards (enp1s0f0 and enp1s0f1) each attached to a bridge (br0 and br1, respectively). The physical network adapters show up as degraded because they don’t have network addresses directly assigned – that assignment is done on the bridge. The gre0 and gretap0 devices are created automatically to handle the gre tunnel gre-colocation. There are also two VLANs configured within systemd and attached to a bridge. The tun interfaces are OpenVPN interfaces and they are not configured by systemd-networkd (hence the unmanaged setup).

Further Reading

	ArchLinux systemd-networkd documentation [https://wiki.archlinux.org/index.php/Systemd-networkd/]

	Upstream systemd-networkd documentation [https://www.freedesktop.org/software/systemd/man/systemd-networkd.service.html]

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fedora Cloud 0.1 documentation

Atomic image examples

This chapter will contain various examples related to Atomic project.

Setting up Fedora Atomic cluster with Kubernetes and Vagrant

You can use Vagrant to setup a Fedora Atomic cluster. Use the following steps to set it up.

$ git clone https://github.com/kubernetes/contrib.git
$ cd contrib/ansible/vagrant
$ export OS_IMAGE=fedoraatomic # (regular fedora, regular centos, centos atomic are other options)
$ vagrant up --no-provision --provider=libvirt # (virtualbox, openstack and aws are other provider options)
$ vagrant provision kube-master

This should get you a working Atomic cluster ready. For more details follow this blog post [http://www.projectatomic.io/blog/2015/09/clustering-atomic-hosts-with-kubernetes-ansible-and-vagrant/].

Setting up Fedora Atomic cluster with Kubernetes and preinstalled hosts

In case you don’t want to use Vagrant, you can systems preinstalled with Fedora Atomic, and then update
the inventory file (check the section above for git repo link), and use the same.

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fedora Cloud 0.1 documentation

Atomic Command Cheat Sheet

This chapter contains cheat sheet for atomic commands

The atomic command ``/usr/bin/atomic`` defines the entrypoint of Project Atomic hosts

	atomic host upgrade upgrades to a newer version.

	atomic host rollback rollbacks to the previous version.

	atomic host status shows the current status of the installed atomic host.

	atomic run <name> executes container image run method.

	atomic install <name> installs a container on atomic host with systemd unit file to run it as service.

	atomic uninstall <name> uninstalls the container from the atomic host.

	atomic info <name> returns LABEL Information of the image.

	atomic images displays all the container image present on the atomic host.

	atomic scan <name> scans the image or container

	atomic stop <name> executes container image stop method

	atomic mount mounts container image to a specific directory

	atomic diff shows difference between to container images, RPMs or file diff

	atomic push pushes (upload) the latest image to the repository

	atomic pull pulls the latest image from the repository

	atomic top shows stats about processes running inside container

	atomic storage manages container storage

	atomic unmount unmount container image

	atomic update updates to the latest container image of the repository

	atomic version displays “Name Version Release” Label of the image

	atomic verify verifies that the image is fully updated

We have blog post for few commands. Check this [https://trishnag.wordpress.com/2016/08/11/getting-started-with-atomic-commands/].

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fedora Cloud 0.1 documentation

Cloud Base Image examples

This chapter will contain various examples related to Cloud Base Image.

How to do docker-storage-setup in Fedora 22 cloud image?

docker-storage-setup helps to create a LVM thin pool, which can be then used by
docker for storage of containers, and images. By starting docker, it
automatically starts this service. We can also make sure that it uses a
specific block device, and volume group. In this example I am running Fedora 22
Cloud Base image on an Openstack environment, I added a new volume /dev/vdb
to the instance.

cat <<EOF > /etc/sysconfig/docker-storage-setup
DEVS=/dev/vdb
VG=docker-vg
EOF
sudo docker-storage-setup
 Volume group "vda1" not found
 Cannot process volume group vda1
Checking that no-one is using this disk right now ... OK

Disk /dev/vdb: 5 GiB, 5379194880 bytes, 10506240 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc8ed8872

Old situation:

>>> Script header accepted.
>>> Created a new DOS disklabel with disk identifier 0x39ca0d62.
Created a new partition 1 of type 'Linux LVM' and of size 5 GiB.
/dev/vdb2:
New situation:

Device Boot Start End Sectors Size Id Type
/dev/vdb1 2048 10506239 10504192 5G 8e Linux LVM

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.
 Physical volume "/dev/vdb1" successfully created
 Volume group "docker-vg" successfully created
 Rounding up size to full physical extent 8.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume docker-vg/docker-pool and docker-vg/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted docker-vg/docker-pool to thin pool.
 Logical volume "docker-pool" changed

How to build a network router and firewall with Fedora 22 and systemd-networkd?

Major Hayden explains that in this blog post [https://major.io/2015/08/27/build-a-network-router-and-firewall-with-fedora-22-and-systemd-networkd/].

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fedora Cloud 0.1 documentation

Docker related queries

SELinux rule for volumes on host

chcon -Rt svirt_sandbox_file_t /path/to/volume

Without this you will see permission error on a Fedora host.

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fedora Cloud 0.1 documentation

Vagrant

Vagrant [https://www.vagrantup.com/] is a useful development tool that lowers the barrier to
entry to new contributors of your project. With Vagrant, new contributors don’t have to spend much
time configuring their development environment, but can quickly get one automatically provisioned
for them with a few simple commands.

Using Vagrant in Fedora

Fedora’s Cloud working group provides Fedora Vagrant boxes for libvirt and Virtualbox. You can see
the Fedora 24 Vagrant images
here [https://download.fedoraproject.org/pub/fedora/linux/releases/24/CloudImages/x86_64/images/].

To quickly get started with Vagrant on a Fedora host, the Fedora developers have conveniently
packaged vagrant-libvirt and a handful of handy Vagrant plugins for you. All you need to do is to
install vagrant-libvirt and the plugins you wish to use, write a Vagrantfile for your project, and
type “vagrant up” to get started. Here’s an example Vagrantfile:

$ cat Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

On your host:
git clone https://github.com/fedora-infra/bodhi.git
cd bodhi
cp Vagrantfile.example Vagrantfile
vagrant up
vagrant ssh -c "cd /vagrant/; pserve development.ini --reload"

Vagrant.configure(2) do |config|
 config.vm.box_url = "https://download.fedoraproject.org/pub/fedora/linux/releases/24/CloudImages/x86_64/images/Fedora-Cloud-Base-Vagrant-24-1.2.x86_64.vagrant-libvirt.box"
 config.vm.box = "f24-cloud-libvirt"
 config.vm.network "forwarded_port", guest: 80, host: 80
 config.vm.synced_folder ".", "/vagrant", type: "sshfs"

 config.vm.provider :libvirt do |domain|
 domain.cpus = 4
 domain.graphics_type = "spice"
 domain.memory = 1024
 domain.video_type = "qxl"
 end

 config.vm.provision "shell", inline: "echo hello_world > /home/vagrant/hello_world.txt"

 # Uncomment the following block if you have a playbook at devel/ansible/playbook.yml you want Vagrant to run on the guest for you
 # # Ansible needs the guest to have these
 # config.vm.provision "shell", inline: "sudo dnf install -y libselinux-python python2-dnf"
 #
 # config.vm.provision "ansible" do |ansible|
 # ansible.playbook = "devel/ansible/playbook.yml"
 # end
end

In this example, we’re using the Fedora 24 libvirt box and we’re assuming that your project has an
ansible playbook at the relative path devel/ansible/playbook.yml. Writing ansible playbooks is
beyond the scope of this document, and you are free to use config.vm.provision lines to configure
your Vagrant guest if you like.

To get started with the above example, simply write the code to a file called Vagrantfile, install
vagrant-libvirt and vagrant-sshfs, and run vagrant up:

$ cd ~/devel/my_project
$ vim Vagrantfile # Write the above Vagrant code here
$ sudo dnf install vagrant-libvirt vagrant-sshfs
$ vagrant up

Once your guest is running, you can ssh into the guest. Your code directory from the host will be
shared into the guest at the path /vagrant:

$ vagrant ssh
$ [vagrant@localhost ~]$ ls /vagrant/Vagrantfile
/vagrant/Vagrantfile

Now you can edit your project on your host, and the changes you make will be shared into the guest’s
/vagrant folder live. This allows you to use your editor of choice (even graphical editors!) on
the host, while keeping everything that might “dirty” you host system contained in the guest virtual
machine. This example Vagrantfile has also set up a port forward from 80 in the guest to 80 on
the host, so if there were a web application listening in the guest on port 80, you could browse to
http://localhost on the host to access it.

When you are done with your Vagrant guest, you can destroy it:

$ vagrant destroy

It is good practice to check in a Vagrantfile.example file in your project’s source code, rather
than the Vagrantfile itself. This allows new developers a quick way to get started by just
copying your example into place, but it also allows each contributor to make the changes they prefer
to their individual Vagrantfiles.

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fedora Cloud 0.1 documentation

Irssi: IRC Client on Atomic Host

Irssi [https://irssi.org/] is a Terminal Based IRC Client for Unix/Linux based systems. This page shows how to run Irssi on Atomic Host.

Steps

First you will need to boot up an atomic host

	Copy the Sources down from here Fedora Dockerfile for Irssi [https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/irssi/].

	
	Perform the build with the following command:

	docker build -t fedora/irssi .

	
	After the build is successful run the container with the following command:

	atomic run fedora/irssi

This will start Irssi.

Irssi Commands

To Connect to Server:

/connect irc.freenode.net

To Connect to Channel:

/join #fedora

To leave Channel:

/part #fedora

To Set nick:

/set nick username

To Identify nick:

/msg nickserv identify password

To Change nick:

/nick username1

More Commands

	Command
	Description

	/ban
	Sets or lists bans for a channel

	/clear
	Clears a channel buffer

	/disconnect
	Disconnects from the network that has focus

	/exit
	Disconnects client from all networks and returns to shell prompt

	/join
	Joins a channel

	/kick
	Kicks a user out

	/kickban
	Kickbans a user

	/msg
	Sends a private message to a user

	/names
	Lists the users in the current channel

	/query
	Opens a query window with a user or closes a current query window

	/topic
	Displays/edits the current topic

	/unban
	Unbans everyone

	/whois
	Displays user information

	/window close
	Forces closure of a window

Further Reading: To know more about Irssi visit https://irssi.org [https://irssi.org/].

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Fedora Cloud 0.1 documentation

How to contribute to this guide?

This guide is maintained by volunteers on github. It is written using reStructred Text, and sphinx project. If you want to add full doc in any part of this document, feel free to submit a pull request. You can also add links to blog posts which explains how to do any particular task on Cloud.

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Fedora Cloud 0.1 documentation

Index

 Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/up-pressed.png

_static/file.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/logo.png

_static/up.png

search.html

 Navigation

 		
 index

 		Fedora Cloud 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Fedora Cloud Working Group.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

